Fractional generalization of gradient and Hamiltonian systems
نویسنده
چکیده
We consider a fractional generalization of Hamiltonian and gradient systems. We use differential forms and exterior derivatives of fractional orders. We derive fractional generalization of Helmholtz conditions for phase space. Examples of fractional gradient and Hamiltonian systems are considered. The stationary states for these systems are derived. PACS numbers: 45.20.−d, 05.45.−a
منابع مشابه
New conditions on ground state solutions for Hamiltonian elliptic systems with gradient terms
This paper is concerned with the following elliptic system:$$ left{ begin{array}{ll} -triangle u + b(x)nabla u + V(x)u=g(x, v), -triangle v - b(x)nabla v + V(x)v=f(x, u), end{array} right. $$ for $x in {R}^{N}$, where $V $, $b$ and $W$ are 1-periodic in $x$, and $f(x,t)$, $g(x,t)$ are super-quadratic. In this paper, we give a new technique to show the boundedness of Cerami sequences and estab...
متن کاملTransport Equations from Liouville Equations for Fractional Systems
We consider dynamical systems that are described by fractional power of coordinates and momenta. The fractional powers can be considered as a convenient way to describe systems in the fractional dimension space. For the usual space the fractional systems are non-Hamiltonian. Generalized transport equation is derived from Liouville and Bogoliubov equations for fractional systems. Fractional gene...
متن کاملFractional Generalization of Gradient Systems
We consider a fractional generalization of gradient systems. We use differential forms and exterior derivatives of fractional orders. Examples of fractional gradient systems are considered. We describe the stationary states of these systems. Mathematics Subject Classification (2000). 426A33, 70G60.
متن کاملFractional generalization of Liouville equations.
In this paper fractional generalization of Liouville equation is considered. We derive fractional analog of normalization condition for distribution function. Fractional generalization of the Liouville equation for dissipative and Hamiltonian systems was derived from the fractional normalization condition. This condition is considered as a normalization condition for systems in fractional phase...
متن کاملFractional Liouville and BBGKI Equations
We consider the fractional generalizations of Liouville equation. The normalization condition, phase volume, and average values are generalized for fractional case. The interpretation of fractional analog of phase space as a space with fractal dimension and as a space with fractional measure are discussed. The fractional analogs of the Hamiltonian systems are considered as a special class of no...
متن کامل